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Abstract

The carbon intensity of grid-supplied electricity depends
on the mix of generation sources used to satisfy its demand
and varies widely over time and across locations. There are
two widely used carbon intensity signals: average and mar-
ginal. Both signals provide distinct information about grid
operations and affect the electric grid’s short- and long-term
operation differently. Unfortunately, there is a lack of con-
sensus on the “right” signal for carbon-aware optimizations,
and decarbonization efforts across domains are using both
signals to guide carbon-aware workload scheduling. To un-
derstand the implications of signal selection on carbon-aware
optimizations, we perform a data-driven analysis using the
average and marginal carbon intensity from 65 regions to un-
derstand how the choice of carbon intensity signal impacts
the carbon-aware scheduling decisions.

1 Introduction

Growing concern about climate change has elevated the im-
portance of assessing and reducing the carbon footprint of
energy consumption across societal sectors, including data-
centers [1, 2, 12], buildings [8, 18], and transportation [14, 17].
Many of these decarbonization initiatives aim to shift en-
ergy demand to when and where low-carbon electricity is
available. Such carbon-aware optimizations are enabled by
the recent emergence of third-party carbon information ser-
vices, such as Electricity Maps [11], and WattTime [19], that
provide carbon intensity of electricity across regions world-
wide. Carbon information services provide carbon intensity
information using two metrics: the average and marginal car-
bon intensity, both expressed in the grams of carbon dioxide
emitted per kilowatt-hour of electricity (g-COzeq/kWh). The
average (or attributional) carbon intensity is the weighted
average of the carbon intensity of all the generators used
to satisfy the current grid demand. The marginal (or conse-
quential) carbon intensity is the carbon emissions rate of the
generator that responds to incremental changes in energy
usage.

The two carbon intensity signals express different aspects
of electric grid operations to satisfy the electricity demand.
The average signal provides information on the grid’s overall
portfolio of energy generation resources. The marginal sig-
nal derives from a smaller set of fast-responding generators
that fulfill the marginal segment of electricity demand. In-
terestingly, the signals do not always align, which is critical
for carbon-aware optimizations, for the weak correlations
in the signals imply that the choice of the signal will lead to

different scheduling outcomes for the same workload. Due
to the vast and critical implications of carbon signal choice,
there is an ongoing debate as to which signal should be used
for decarbonization [3, 5, 13]. Since there is not yet a con-
sensus, this paper aims to facilitate this discourse using a
data-driven approach.

2 Overview Of Proposed Work

We plan to use several state-of-the-art carbon optimization
techniques to show how the choice of carbon intensity signal
impacts the workload scheduling decisions and resources.

2.1 Carbon Optimization Techniques

Temporal Workload Scheduling. The carbon-aware tem-
poral scheduling techniques that we plan to use for the evalu-
ation are WaitAwhile [20] and CarbonScaler [6]. WaitAwhile
is a carbon-aware suspend-resume policy that splits and
schedules the workloads towards low-carbon periods. Be-
sides suspending and resuming the workload that can incur
long delays in job completion times, CarbonScaler exploits
the elasticity of batch workloads, where this scheduler dy-
namically allocates resources for a job based on variations
in carbon intensity.

Spatial Workload Shifting For the spatial workload shift-
ing, we plan to use one-migration, infinite-migrations and a
few variations of load-balancing to evaluate the effects of
the scheduling decisions. One-migration policy migrates a
job to a region with the lowest mean overall, and the job is
executed in the lowest mean region until completion. On the
contrary, the infinite-migrations policy migrates the job to
a region with the lowest carbon intensity of that hour, and
the migration continues every hour until the job completes
its execution.

2.2 Impacts on Resources Usage

Some of the resources we want to examine how they are
affected by the carbon intensity signal chosen by the carbon-
aware scheduler include:

Carbon Savings. We want to examine how the choice of
signal affects the carbon savings based on the optimized
signal and the other signal’s standpoints.

Completion Time. Different signal choices could lead to
different overall completion times for a job.

Locational Marginal Pricing (LMP). The marginal energy
price is based on the demand and congestion of an electric
grid, expressed in dollars per megawatt-hour ($/MWh). With
this metric, we want to analyze how the choice of signal
impacts the total cost to execute the workload.
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Figure 1. The mean ts mean daily coefficient of variation for
average and marginal signals (a)-(b), and the mean daily cor-
relation, categorized as Strong, Moderate, and Weak, between
the average and marginal signal (c).

Energy Demand. Since the energy demand can influence
capacity planning and energy use incentives, we want to
analyze how different signal choices impact the distribution
of energy demand across time.

Migration Overhead. Since migrating workloads to other
regions incur state-transfer overheads, we want to examine
the net savings from spatial migration from the average and
marginal carbon intensity.

Latency Overhead We want to examine the latency in-
curred during the migration with respect to the different
signal choices.

3 Preliminary Results
3.1 Carbon Intensity Signal Characteristics

The extent of savings from carbon-aware optimizations de-
pends on the spatiotemporal variability in the carbon inten-
sity signals. The larger the difference between the magni-
tudes of the carbon signals across regions, the higher the
spatial savings. The larger the variations within a region’s
carbon intensity, the higher the temporal savings. In Fig-
ures 1(a)-(b), we quantify the variability of a carbon sig-
nal as the daily coefficient of variation (CV), computed as
the daily standard deviation over the daily mean. The aver-
age carbon intensity signal has a lower mean value of 381.4
g - COzeq/kW has compared to 444.29 g - CO,eq/kW hfor the
marginal carbon intensity signal. However, the average sig-
nal exhibits a higher variability (0.11 CV) than the marginal
signal (0.07 CV).

While these statistics provide information about overall
carbon emissions and the potential for carbon savings, they
do not necessarily indicate that the signals differ, as signals
with different magnitudes can still be correlated. Figure 1(c)
shows the distribution of the mean daily correlation between
the average and marginal carbon intensity signals. We cate-
gorize the values as positively or negatively correlated with
strong, moderate, and weak correlations, specified by the
ranges of (0.7, 1], (0.2,0.7], and [0,0.2], respectively. Among
65 regions, 36 regions (55.4%) exhibit a negative correlation
between their average and marginal carbon intensity signal,
and only 1.5% have a strong positive correlation.

3.2 Impact on Carbon Savings Calculations

Figure 2(a) shows carbon savings across all the regions when
the average signal guides the workload scheduling. The two
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Figure 2. Scheduling and accounting implications: Carbon
savings using the average signal (a) and the marginal signal
(b) for temporal scheduling. Carbon savings using the average

signal (a) and the marginal signal (b) for spatial scheduling.

boxplots correspond to the signal used for calculating car-
bon savings compared to the counterfactual of no workload
shifting (carbon-agnostic execution). Figure 2(b) shows the
same for a scenario when the marginal signal is used as the
guide signal. From Figure 2(a)-(b) it can be seen that based
on the other signal, the carbon savings are negative, i.e., car-
bon emissions actually increased. Also, the estimated carbon
savings based on the scheduling signal differ for both signals;
scheduling and accounting based on average signal yields
18% savings while based on marginal signal yields 11% sav-
ings. Moreover, Figures 2(c)-(d) show mean carbon savings
of ~87% when the average and marginal signal are used for
spatial workload shifting. Like the temporal scheduling, the
other signal yields less carbon savings than the scheduling
signal. Generally, choosing one signal for carbon-aware op-
timizations for temporal workload scheduling leads to more
carbon emissions from the other signal standpoint. While
the opposite signal gains some savings from the decisions of
the scheduling signal in spatial shifting, the savings of the
opposite signal are always less than the scheduling signal.

4 Future Work

For the work to be done, we plan to analyze how the spa-
tiotemporal scheduling policies (§2.1) based on the average
and marginal carbon intensity signal impact the resources
described in §2.2. We will navigate the multi-dimensional
optimization configurations, which are the resource metrics
to learn about their relationship with carbon savings. We
will also evaluate the types of workloads that stand to benefit
from different signal choices.

5 Related Work

There is no consensus on the choice of carbon signal, for
some works use the average signal [2, 9, 10, 15, 16, 20], some
studies use the marginal carbon intensity signal for carbon-
aware optimizations [4, 7]. Moreover, there is very limited
prior work on understanding the difference between the av-
erage and the marginal carbon intensity signals and their
implications on grid operations. The most relevant work on
this topic is done by Gagnon and Cole [5], who look at the
impact of traditional marginal signal and how it can be ex-
tended to incorporate future capacity planning implications.
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